Abstract - Nicholas Melosh

Our multi-disciplinary team is developing a fundamentally new way to record long-term intracellular signals from neurons. Using fabrication techniques developed for semiconductor manufacturing, we have created arrays of silicon electrodes with a small band of fatty molecules that are similar to those in the cell membrane that surrounds each cell. Due to the similar properties between this band and the cell membrane, neurons adhere to the posts and may form tight electrical seals appropriate for recording that are stable for days to weeks. Conceptually, this arrangement allows for an intracellular whole cell patch-clamp system with hundreds or thousands of electrodes that supports long-term, non-destructive electrical access into neuronal cells. Our long-term goals are to develop this technology for wide distribution among researchers to advance basic discoveries and accelerate drug discovery to improve the health and well-being of those suffering from disorders of the brain.

» Back to Awards


Principal Investigator Institution Title Abstract
Andersen, Richard California Institute of Technology Engineering Artificial Sensation View
Andrews, Anne University of California, Los Angeles Nanoscale Neurotransmitter Sensors View
Bloodgood, Brenda University of California San Diego A novel toolkit for visualizing and manipulating activity-induced transcription in living brain. View
Chaumeil, Myriam University of California, San Francisco In vivo metabolic imaging of neuroinflammation using hyperpolarized 13C View
Cleary, Michael University of California, Merced Capturing physiological maps of neural gene expression View
Cohen, Bruce University of California, Lawrence Berkeley National Laboratory Nano-optogenetic control of neuronal firing with targeted nanocrystals View
Dai, Hongjie Stanford University  Deep brain imaging of single neurons in the second near-infrared optical window View
Hall, Drew University of California, San Diego Magnetic Monitoring of Neural Activity using Magnetoresistive Nanosensors View
Krubitzer, Leah University of California, Davis An integrated system to monitor, image, and regulate neural activity View
Kubby, Joel University of California, Santa Cruz Three-Photon Microscopy with Adaptive Optics for Deep Tissue Brain Activity Imaging View
Melosh, Nicholas Stanford University Parallel Solid State Intracellular Patch-Clamping with Biomimetic Probes View
Park, B. Hyle University of California, Riverside  Label-free 4D optical detection of neural activity View
Portera-Cailliau, Carlos University of California, Los Angeles High-speed interrogation of network activity with frequency domain multiplexing View
Shanechi, Maryam University of Southern California Control-Theoretic Neuroprosthetic Design Using Electrocorticography Signals View
Smith, Will University of California, Santa Barbara Whole brain imaging in a primative chordate View
Wood, Marcelo University of California, Irvine Epigenetic PET tracer for cross-species investigation of age-related memory dysfunction View